后答辩去哥廷根。
没错,西格尔现在觉得,他们去哥廷根是做博士答辩。
想到这里,西格尔不由得笑了起来,为这命运的奇妙,他也就不再反对此事,而是希望尽一切可能帮伦道夫解决孪生素数猜想。
“伦道夫,我们时间只有五天,所以我希望能够把我对孪生素数猜想的思考全部告诉你。”
第二天,这回只有林燃和西格尔了。
“孪生素数猜想认为存在无限多的素数对,它们的差为2,比如3和5,或者11和13。
从计算检查来看,随着数字变大,孪生素数似乎不断出现。
此外,基于两个数都是素数的概率,有一个启发式论证。启发式方法表明,截至x的孪生素数对的数量大约是C乘以从2到x的dt/(logt)2的积分,其中C是孪生素数常数。
我当年在剑桥的时候与哈代讨论过这个。他和利特尔伍德基于他们的圆法工作非常相信这个猜想的正确性,但这不是证明,这是猜想,只是他们提出的一个概率模型。
后续围绕这个,我进行过一些更深入的思考,布伦定理,它表明孪生素数的倒数之和收敛,这意味着与所有素数相比,孪生素数相对稀疏,但并不能告诉我们它们是有限还是无限多。
筛法也许能够用来解决这个问题,用筛法来证明存在无限多个整数n,使得n和n2都有很少的素因子,然后或许可以细化到证明它们是素数。
这是一个合理的方向,毕竟筛法在研究几乎素数方面很成功,像塞尔伯格的筛法就用来估计了具有某些性质的整数的数量。
但直接应用于孪生素数是具有挑战性的,因为在孪生素数猜想里需要n和n2同时是素数,这是一个更严格的条件。
这几年我又在思考,使用像L函数这样的分析方法会不会更合适一些。
毕竟L函数同样
本章未完,请点击下一页继续阅读! 第4页 / 共10页