西像我们今天对一个成功的科学解释的理解:对现象必须有定量的认识。”温伯格接着说,他在给文科学生讲物理的时候,觉得最重要的是让学生学会计算阴极射线的偏转和油滴的下落,这倒不是说任何人都需要学会计算这些东西,“而是因为他们能在计算的过程中体会物理学原理的真实意义。”
克莱因总结说:“近代科学成功的秘密就在于在科学活动中选择了一个新的目标。这个由伽利略提出的并为他的后继者们继续追求的新目标就是寻求对科学现象进行独立于任何物理解释的定量的描述。”笛卡尔是一个最典型的实例。他把整个自然还原为长宽高三维以及位移运动,就是说,还原为可以进行定量研究的对象。近代科学标志着我们对自然采取了一种新的态度,这种态度就是外在的态度或曰数学的态度。海德格用他特有的句式说道:“近代科学的基本特征是数学性的东西,这倒不是在说,近代科学是用数学进行工作的;这倒是要在某种意义上表明,狭义的数学只有根据近代科学才得以发生作用。”
讲到这里,我们可能会想到柏拉图的蒂迈欧篇,他在那里把基本元素设想为几种正多面体,即一些纯粹的几何形态。的确,和亚理士多德相比,柏拉图的数学倾向非常突出。在西方思想传统内部,人们一直看到两种对立的取向,一是毕达哥拉斯…柏拉图传统,他们重数、数学、形式,一是亚理士多德传统,重经验、生物学、有机生长。尽管如此,我们仍不难看到柏拉图和笛卡尔的巨大差别。首先,柏拉图的正多面体元素尽管体现了把自然数学化的一大步,但它是一种思辨,而不是拉卡托斯意义上的研究纲领。其次,在希腊〔以及在中世纪〕,主宰数学王国的是几何,代数始终处于附庸的地位。几何形态,如三角形、圆、立方体等,是具有质的。这一点亚理士多德曾格外予以强调。而笛卡尔把质从几何学中消除了。笛卡尔创建了解析几何,使代数成为数学王国的君王。通过解析几何的技巧,很多原本被认定为不同性质的线和图形被归约为可以换算的代数公式,从而,“以前一向为几何学家所避免的许多曲线就有了和比较常见的曲线相同的地位了。”在笛卡儿的几何学中,在对几何的这种新的理解中,几何学本身也不再依赖于形象,图形只是数学公式的外部表现而已。数学在欧几里德那里脱离了感应,在笛卡尔这里脱离了感性。
科数运与数学(2)
迪昂描述了物理学理论形成的四个相续阶段的操作特征。一,选择那些简单的可测量的物理性质,用数学符号加以表征。二,用少数原理把不同
本章未完,请点击下一页继续阅读! 第2页 / 共6页