渐近行为。
事实上我已经借用量子模拟超算进行了数次奇异涡旋模态分解。但显然,目前的结果并没有能直接证明其具备光滑解跟唯一性的证据。
所以肯定还有我没想到的地方,如果你不忙的话,也许我们能一起针对这两个问题进行更深入的探讨。
如果你的团队有空暇也可以接入计算,让我们一起努力,争取早日解决这个未解之谜。
另:其实我想休息来着。但是我的老师跟袁老人家觉得我休息的时间很长了!他们对我寄予厚望,让我不方便偷懒。
所以请一定要帮我想想办法!而且我有种预感,当我们彻底认识到湍流的本质,或者说数学上的本质,将能在航天领域开辟另一条新的赛道,赛道上将会有我们的名字。
陶轩之在博客上将这封信公开之后,后面顺带发了自己的见解。
「虽然乔喻给我画了一张很大的饼,但我发现以我浅薄的知识储备恐怕无法独立完成他所托付给我的任务。
所以如果大家谁有更好的想法,也许可以一起讨论。尤其是如何将粘性项△u嵌入模态空间的曲率张量这个问题。
Au代表着速度场的扩散效应。它在空间中的作用通常与速度场的变化率有关,直观地讲,粘性项控制了速度场的平滑性。
但在模态空间的框架中,粘性项不仅需要考虑速度场的梯度,还要考虑其如何与模态结构相互作用。
这就涉及到如何将这些空间中的变换映射到模态空间,并理解这些变换如何影响解的性质。
另外,我们是否能把模态空间理解为对速度场进行投影后的一个空间,其中每个模态对应一个特定的基函数或频率。
那么在该空间里,问题的复杂性可能会简化,因为模态空间中的各个成分可以看作是解的一种表示或分解。
但是模态空间中的曲率张量涉及到流体
本章未完,请点击下一页继续阅读! 第3页 / 共7页